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A B S T R A C T

Background: Numerous studies have revealed the abnormal static functional connectivity (FC) among different
brain regions in patients with generalized anxiety disorder (GAD). However, little is known about the dynamic
changes of FC in patients with GAD.
Methods: This study investigated the whole-brain dynamic changes of FC in patients with GAD by combining
global FC density (FCD) and sliding window correlation analyses. The standard deviation of dynamic FCD
(dFCD) was calculated to evaluate its temporal variability along time. Support vector regression was then em-
ployed to predict the symptom severity of patients based on abnormal dynamic connectivity patterns.
Results: The abnormal dFCD variability between 81 GAD patients and 80 healthy controls showed that the
patients had higher dFCD variability in the bilateral dorsomedial prefrontal cortex (dmPFC) and left hippo-
campus while lower dFCD variability in the right postcentral gyrus. The abnormal dFCD variability of the left
dmPFC is an important feature for anxiety prediction.
Limitations: The selection of sliding window length remains controversial, and most of our patients have been
treated with medications. Future studies are expected to rule out the potential confounding effects from applying
different parameters of the sliding window and recruiting large samples of medication-free patients.
Conclusion: The altered patterns of time-varying brain connectivity in the frontolimbic and sensorimotor areas
may reflect abnormal dynamic neural communication between these regions and other regions of the brain,
which may deepen our understanding of the disease.

1. Introduction

Generalized anxiety disorder (GAD) is a prevalent psychiatric dis-
ease accompanied by chronic, persistent, excessive, and uncontrollable
worry (Fonzo and Etkin, 2016; Makovac et al., 2016; Schienle et al.,
2011) and unreasonable fear among a variety of aspects in daily life
(Strawn et al., 2012; Tyrer and Baldwin, 2006). GAD is a common
anxiety disorder subtype, which has the lowest remission rate after
treatment compared with other anxiety disorders (Buff et al., 2016;
Kinney et al., 2017). Patients with GAD often become easily fatigued,
restless and irritable and have increased muscle tension and difficulty in
concentrating and sleeping (DeMartini et al., 2019). Although, nu-
merous neuroimaging studies have been performed to investigate the
pathological basis of the disease, the underlying mechanisms remain
poorly characterized.

A significant feature of GAD is emotion dysregulation (Blair et al.,
2012; Etkin et al., 2010; Mochcoyitch et al., 2014; Palm et al., 2011),
which is characterized by emotional hyperarousal, poor understanding
of emotions, negative attitudes about emotions, and maladaptive
emotion management and regulation (Behar et al., 2009). The hyper-
response to negative emotion has been repeatedly reported in patients
with GAD, manifesting itself as over-activation in the limbic system
(Fonzo et al., 2015; McClure et al., 2007; Monk et al., 2008; Moon and
Jeong, 2015; Park et al., 2016) and is often accompanied by hypo-ac-
tivation in the prefrontal cortex (Monk et al., 2008; Moon and
Jeong, 2015; Palm et al., 2011; Via et al., 2018; Wang et al., 2018a),
which is associated with emotional dysregulation. Furthermore, the
abnormal functional connectivity (FC) of the default mode network
(DMN) (Diefenbach et al., 2019; Rabany et al., 2017; Roy et al., 2013),
frontal-parietal network and salience network (Etkin et al., 2009;
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Rabany et al., 2017) is implicated in the impairment of emotional
regulation in patients with GAD. These findings are consistent with the
cognitive models of GAD, which propose that GAD patients show ob-
vious impairments in cognitive control (Hirsch and Mathews, 2012),
including negative attention bias (Fonzo et al., 2015; McClure et al.,
2007; Monk et al., 2008), inhibition impairments (Hallion et al., 2017)
and disrupted performance in working memory (Moon and
Jeong, 2015; Park et al., 2016). The brain regions associated with these
impairments are widely distributed across the frontal-parietal cortices,
which belong to the executive system (Cui et al., 2014). These regions
include the ventral prefrontal cortex, dorsolateral prefrontal cortex,
superior parietal gyrus and postcentral gyrus.

The abovementioned studies were based on the assumption that
brain activity is relatively stable during functional magnetic resonance
imaging (fMRI) scanning. However, brain activity is dynamic and is
accompanied by ongoing change over time (Calhoun et al., 2014;
Hutchison et al., 2013; Li et al., 2018b; Liao et al., 2019; Yao et al.,
2017), which may result in dynamic connectivity among discrete brain
regions. The dynamic connectivity alterations might be potential bio-
markers of specific diseases (Jones et al., 2012; Sakoglu et al., 2010)
and be useful for searching additional abnormalities caused by mental
diseases (Yao et al., 2017), which can be assessed by the dynamic FC
(dFC) approach. The dFC method can precisely describe the colla-
boration of brain regions by measuring the time-varying covariance of
their neural signals during resting-state (Yao et al., 2017). The dFC
method has been used to measure the dynamic connectivity abnorm-
alities in several psychiatric and neurological disorders, such as de-
pression (Kaiser et al., 2016; Pang et al., 2018), autism (Guo et al.,
2018), schizophrenia (Supekar et al., 2019), and epilepsy (Li et al.,
2018c), and provide evidence that altered fluctuating communication
among high-order regions or networks is associated with the patholo-
gical symptoms of these respective disorders. Only a few studies have
investigated the dynamic changes of brain connectivity in patients with
GAD using the dFC approach. These studies revealed that the altered
temporal features of dFC can be used as effective features to distinguish
adolescents with GAD from healthy controls (HCs) with high accuracy
(Yao et al., 2017). In addition, dFC can be used to identify the differ-
ences in brain states and network properties between GAD and co-
morbid GAD patients with insomnia (Li et al., 2018a). Both dFC-related
studies of GAD have focused on time-varying brain connectivity
changes between networks derived from independent component ana-
lysis, and they highlight the importance of considering fluctuating dy-
namic neural communication among brain systems when studying the
pathophysiological mechanism of GAD. Recently, dynamic FC density
(dFCD) has also been used to characterize the abnormal dynamic neural
communication among brain regions in individuals with psychiatric
and neurological disorders, such as in children with benign epilepsy
with centrotemporal spikes (Li et al., 2018d). dFCD was based on static
FCD that is defined by the functional connections of each voxel with all
other voxels in the whole-brain (Tomasi and Volkow, 2010) and sliding
window correlation approach. Unlike the seed-based FC approach, FCD
is an unbiased graph theory method (Zhang et al., 2017) that does not
require any prior assumption (Pang et al., 2017) and is suitable for
exploratory analyses (Tomasi et al., 2016). In specific, a prior study
found that patients with GAD exhibit aberrant frequency-specific FCD
(Zhang et al., 2017). In addition, dFCD can be used to depict voxel-wise
FC changes within shorter time scales than static FCD. Therefore, dFCD
may be a prominent approach to provide more subtle and com-
plementary information compared with previous FC and static FCD-
related findings to deepen our understanding of patients with GAD.

In this study, we employed the unbiased whole-brain global dFCD
approach to characterize the abnormal communication among brain
regions in patients with GAD. The standard deviation (SD) of FCD va-
lues across sliding windows was utilized to quantify the alterations of
dFCD. According to aforementioned studies, patients with GAD exhibit
abnormal static FCD and dynamic characteristic of brain connectivity

during resting state. We expect that patients with GAD will also show
abnormal patterns of time-varying FCD.

2. Materials and methods

2.1. Participants

In total, 90 patients with GAD and 88 HCs participated in this study.
The patients were enrolled from the Clinical Hospital of Chengdu Brain
Science Institute, University of Electronic Science and Technology of
China (UESTC). Two experienced psychiatrists interviewed the patients
using the Structured Clinical Interview for DSM-IV-TR-Patient Edition
(SCID-P, 2/2001 revision). All patients included in this study met the
DSM-IV criteria for GAD. Exclusion criteria included schizophrenia,
major depressive disorder, personality disorder, substance abuse, neu-
rological illness and any history of head trauma or mental retardation.
In specific, considering that the pathological mechanisms of patients
with GAD and those comorbid GAD with major depressive disorder may
be different, we excluded those patients with comorbidity of anxiety
and depression to reduce the heterogeneity of the patients. The clinical
states of each patient were evaluated using the 14-item Hamilton
Anxiety Rating Scale (HAMA). Most patients received medication
treatment, including selective serotonin reuptake inhibitors (SSRIs),
serotonin and norepinephrine reuptake inhibitors (SNRIs), and nor-
epinephrine and selective serotonine reuptake inhibitors (NaSSRI). The
detailed medical information of the patients is presented in Table 1. No
patients were undergoing psychotherapy at the time of the study. The
HCs were enrolled from the local community by using advertisements
and screened with the SCID non-patient edition. The HCs had no history
of any psychiatric illness or neurological disorders. The between-group
differences in gender, age, years of education, and head motion were

Table 1
Characteristics of demographic and clinical variables.

Variables HC (n= 80) GAD (n= 81) Statistics p-value

Age (years) 37.95 ± 14.49 38.28 ± 11.50 U= 3102 0.64a

Gender (male / female) 38/42 33/48 χ2 = 0.75 0.39b

Handedness (left / right) 3/77 2/79 χ2 = 0.22 0.64b

Education (years) 13.08 ± 3.37 12.85 ± 3.06 U= 2770 0.10a

Mean FD 0.09 ± 0.04 0.09 ± 0.05 U= 2863 0.20a

Duration of illness (months) – 45.59 ± 57.50 – –
Age of first onset (years) – 34.58 ± 11.61 – –
No. of anxiety episodes – 1.95 ± 0.98 – –
Duration of single anxiety

episode
– 5.70 ± 5.69 – –

HAMA score – 24.02 ± 5.85 – –
Medical
Medication load index 1.64 ± 0.73
Medications, no. of patients
SSRIs
Fluoxetine 1
Sertraline 10
Paroxetine 25
citalopram 1
Escitalopram 12
Fluvoxamine 1
SNRIs
Venlafaxine 5
Duloxetine 15
NaSSRI
Mirtazapine 2

Abbreviations: HC, healthy control; GAD, generalized anxiety disorder; FD,
framewise displacement; HAMA, 14-item Hamilton anxiety rating scale; SSRIs,
selective serotonin reuptake inhibitors; SNRIs, serotonin and norepinephrine
reuptake inhibitors; NaSSRI: norepinephrine and selective serotonine reuptake
inhibitors.
Values are mean ± standard deviation.

a Mann–Whitney U test.
b Chi-square t-test.
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not significant. All participants were informed about the procedures
and details of the study and provided written informed consent. This
study was approved by the research ethical committee of the UESTC,
listed on Clinical-Trials.gov (Registration Number: NCT02888509).

Nine patients with GAD and eight HCs were excluded because of
maximal head motion or displacement exceeding 2.5 mm or to head
rotation exceeding 2.5°during fMRI scanning. Finally, 81 patients with
GAD and 80 HCs were included in this study. The demographic and
clinical characteristics of the two groups and their differences in
gender, age, handedness, years of education, and mean framewise
displacement (FD) are presented in Table 1.

2.2. Data acquisition

MRI data were obtained using a 3T GE DISCOVERY MR750 scanner
(General Electric, Fairfield Connecticut, USA) with an eight-channel
prototype quadrature birdcage head coil. Participants were instructed
to rest with their eyes closed, not to fall asleep, not to think of anything,
and to keep their head motionless during scanning. We asked all par-
ticipants if they had fallen asleep or opened their eyes during scanning,
and we excluded those who answered yes. Finally, no patients were
excluded because of opening their eyes or falling asleep during scan-
ning. Resting-state functional images were collected using an echo-
planar imaging sequence with the following parameters: repetition time
(TR)/echo time = 2000/30 ms, matrix size = 64 × 64, flip
angle = 90°, field of view = 240 mm × 240 mm, voxel
size = 3.75 mm × 3.75 mm × 3.2 mm, slices = 43, slice thick-
ness = 3.2 mm, no gap, and a total of 255 volumes.

2.3. fMRI data preprocessing

The Data Processing and Analysis of Brain Imaging (DPABI v3.0)
(http://rfmri.org/dpabi) toolbox was used to preprocess the functional
imaging data. For each subject, the first five volumes were discarded to
ensure the equilibrium of the signal. Subsequently, the slice timing
correction and head motion realigning were performed on the re-
maining 250 volumes. The remaining images were further spatially
normalized to a standard template for Montreal Neurological Institute
and resampled to a 3mm × 3mm × 3mm resolution. The normalized
images were then linearly detrended to reduce the effects of signal
drifts. Furthermore, nuisance covariates (Friston-24 parameters of head
motion, white matter signal, cerebrospinal fluid signal and global
signal) were regressed out from the data. Previous studies reported that
the global signal regression can enhance the specificity of FC calcula-
tion (Chen et al., 2016; Fox et al., 2009), in eliminating the non-neu-
ronal signals of global variance related to physiological noise
(Birn, 2012) and motion artefact (Murphy and Fox, 2017; Power et al.,
2014; Yan et al., 2013). Therefore, we regressed the global signal in our
study. In particular, to avoid inducing artificial local spatial correlation,
we did not smooth on our data. Subsequently, data were subjected to
band pass filtering at a frequency range of 0.01–0.08 Hz. Finally, mo-
tion scrubbing with cubic spline interpolation was performed on the
data.

2.4. Head motion analysis

The mean FDs of the GAD group (0.09 ± 0.05) and HC group
(0.09 ± 0.04) were calculated on the basis of realignment parameters
to assess the confounding influence of head motion on connectivity
measures. The between-group difference in mean FD was not significant
( =p 0.20) as determined using a two-sample t-test. In addition, scrub-
bing analysis was employed to detect the “bad” time points with
FD > 0.5mm (Power et al., 2013). The bad time points and their 1-back
and 2-forward time points were discarded (number of GAD:
5.63 ± 12.99; number of HCs: 4.90 ± 8.78) from the time series of
each subject, and the data for these missing points were estimated

through cubic spline interpolation (Pang et al., 2018; Wise et al., 2017).
The between-group difference in remaining time points after discarding
those “bad” points was not significant (Mann–Whitney U test,

=p 0.90).

2.5. Dynamic functional connectivity density analysis

The sliding window dFCD approach was applied to obtain the dy-
namic functional maps for each participant via DynamicBC (Liao et al.,
2014). The window length is a key parameter in sliding window cor-
relation calculation. To avoid introducing spurious fluctuations in
dFCD, the minimum window length should no less than 1/fmin, where
fmin is the minimum frequency of time series (Leonardi and Van De
Ville, 2015). At the same time, the window length should not be too
long to disrupt the temporal variability dynamic of FCD (Li et al.,
2018b). Basing from previous studies, we selected 50 TRs as the
window length to optimize the balance between capturing a rapidly
shifting dynamic relationship and achieving reliable estimates of the
correlations between regions (Li et al., 2018b,c; Pang et al., 2018). The
entire resting-state series of 250 TRs was divided into 41 windows using
50 TRs (100 s) as the window length and 5 TRs (10 s) as the step size.
We obtained a global FCD map in each window by computing Pearson's
correlations between the truncated time course of all pairs of voxels
within the automated anatomical labelling-90 (AAL-90) atlas (com-
prising 45 cortical and subcortical regions in each hemisphere)
(Tzourio-Mazoyer et al., 2002), yielding a set of sliding-window FCD
maps for each subject. We used =r 0.2 as the correlation coefficient
threshold to define the connectivity between two voxels. If their cor-
relation coefficient was larger than 0.2, then connectivity was present
between them. The threshold was selected to eliminate the weak cor-
relations induced by noise (Li et al., 2018b). Subsequently, the temporal
variability was estimated by computing the SD of FCD across sliding
windows. In consideration that the global signal regression may induce
controversial negative correlations (Fox et al., 2009; Murphy et al.,
2009), all our analyses were performed based on positive correlations
above a threshold of 0.2.

2.6. Statistical analysis

Before starting the statistical analyses, the temporal variability map
of each subject was normalized into a z-score matrix by subtracting the
mean and dividing it by the SD of the global values within the AAL-90
atlas. Then, the normalized images were smoothed using a
6mm × 6mm × 6mm full-width at half maximum Gaussian kernel.
Subsequently, the two-sample t-test was performed to detect the be-
tween-group difference in dFCD variability patterns. Gender, age, years
of education, and mean FD were included as covariates. Statistical maps
of the between-group difference were thresholded using permutation
tests as implemented in Permutation Analysis of Linear Models
(Winkler et al., 2016) and integrated into the DPABI toolbox. Multiple
comparison was then performed on the basis of threshold-free cluster
enhancement (TFCE) with 5000 permutations (two-tailed, p< 0.05). A
permutation test with TFCE was considered as a prominent method to
achieve the best balance between the family-wise error rate and the
test-retest reliability (Chen et al., 2018). Regions surviving the multiple
comparison correction were selected as regions of interest (ROIs) and
subjected to the following analyses.

2.7. Support vector regression prediction for symptom severity of patients

A support vector regression (SVR) model was trained to estimate the
symptom severity for each patient based on the temporal variability of
dFCD. The symptom severity of patients was measured by their HAMA
score. In particular, we applied the epsilon-SVR, implemented in
LIBSVM toolbox (Chang and Lin, 2011). Subsequently, the altered
voxel-wise temporal variability of dFCD for each ROI in the GAD group
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was selected as features during prediction. Then, we employed a leave-
one-out cross validation (LOOCV) to train a model that could be used to
estimate each patient's HAMA score. Suppose that N samples are pre-
sent in each LOOCV, we selected the data of N-1 patients as the training
set to train the model and the remaining data as the test set to obtain
the HAMA score using the model. For each ROI, the LOOCV calculation
procedure was repeated N times so that all patients’ HAMA scores could
be predicted. Subsequently, the Pearson's correlation between real and
estimated HAMA scores was performed to obtain the correlation coef-
ficient value R. Finally, we performed a nonparametric permutation test
to assess the statistical significance of the result. In each trial of the
permutation, the actual HAMA scores were randomly reshuffled among
the patients, and the abovementioned procedure for SVR prediction was
repeated to obtain a new correlation coefficient value Rperm. We re-
peated this procedure 5000 times and counted the number of Rperm that
were larger than the original R, and the ratio between this number and
5000 was used to determine the final p value.

2.8. Clinical variable-related correlation analysis

The medication information of each patient was assessed using a
total medication load index, of which the calculation of the index was
described in previous studies (Han et al., 2019; Pang et al., 2018;
Redlich et al., 2015; Wang et al., 2018c). Each medication can be di-
vided into level 1, 2, 3, or 4 in accordance with a previously employed
method (Sackeim, 2001), with reference to the daily dose range and
duration of the medication. Detailed information on the conversion
between medication dosage and corresponding levels is shown in the
tables in the Appendix of Sackeim et al. Medications on levels 1 and 2
were coded as low dose, whereas those with levels 3 and 4 as high dose.
Patients not taking these medications were added to a no-dose subtype.
Then, each medication was coded as 0 (absent), 1 (low dose), or 2 (high
dose) according to the level of the medication. Two medications not
mentioned by Sackeim, escitalopram and duloxetine were coded as 0, 1,
or 2 according to the midpoint of the daily dose range recommended by
the Physician's-Desk-Reference. Finally, the sum of the codes of all
medications one patient had taken was used as the total medication
load index of that patient. This index could then be used to reflect the
dose of medications patients have taken. To estimate the possible ef-
fects of the medications on the dFCD variability-related results, we
performed the non-parametric Spearman's rank correlation between the
total medication load index and the dFCD variability of each ROI with
significant between-group differences. The threshold of p< 0.05/5
(Bonferroni correction) was employed as the statistically significant
level for the correlation analyses.

2.9. Validation analyses

We verified our findings of dFCD variability with 50 TRs (100 s) as
the window length and 5 TRs (10 s) as the step size in sliding-window
correlation analyses. We changed the window length and calculated the
dFCD variability with 30 TRs (60 s) and 80 TRs (160 s) as the window

length and 5 TRs (10 s) as the step size. Meanwhile, to test the con-
founding influence of different step size on our main findings, we
computed the dFCD variability with 1 TR (2 s) and 3 TRs (6 s) as the
step size and 50 TRs (100 s) as the window length. The corresponding
results are shown in the supplementary materials.

3. Results

3.1. Demographics and clinical characteristics

The demographic and clinical information of the HCs and patients
with GAD are presented in Table 1. The differences in gender (χ2 test,

=p 0.39), handedness (χ2 test, =p 0.64), age (Mann–Whitney U test,
=p 0.64), years of education (Mann–Whitney U test, =p 0.10), and

mean FD (Mann–Whitney U test, =p 0.20) were not insignificant
(Table 1).

3.2. Spatial distribution maps of dFCD variability of the HC and GAD
groups

The spatial distribution maps of dFCD variability of HC and GAD
groups were similar (Fig. 1). Regions with high dFCD variability were
mainly located in the prefrontal, parietal, somatosensory, and visual
cortices, and regions with low dFCD variability were mainly involved in
the temporal gyrus, the subgenual anterior cingulate cortex, the hip-
pocampus, and the thalamus.

3.3. Whole gray matter dFCD variability changes in GAD

Group-level statistical analysis revealed that patients with GAD
exhibited increased temporal dFCD variability in the bilateral dor-
somedial prefrontal cortex (dmPFC) and left hippocampus while de-
creased temporal dFCD variability in the right postcentral gyrus (PoG)
(p< 0.05, TFCE corrected) (Fig. 2, Table 2).

3.4. Abnormal dFCD variability predicts symptom severity of GAD

We investigated the relationship between the altered temporal
variability of dFCD and symptom severity of patients with GAD using
SVR and LOOCV. The statistical significance of the result was assessed
using permutation test (p< 0.05/5 was statistically significant,
Bonferroni correction). The abnormal dFCD variability in the left
dmPFC could predict the symptom severity of GAD (Bonferroni
corrected =p 0.0098) (Fig. 3). However, other regions with significant
group differences in dFCD variability did not show any significant
correlation.

3.5. Effects of medications on dFCD variability-related analysis

We did not find any significant correlations between the total
medication load index of GAD and the abnormal dFCD variability in
each ROI.

Fig. 1. Spatial distribution maps of dFCD variability in the HC
and GAD groups. The dFCD variability are normalized by
subtracting the mean and dividing it by the SD of the global
values and averaged across participants within each group.
dFCD, dynamic functional connectivity density; HC, healthy
control; GAD, generalized anxiety disorder; SD, standard de-
viation; L, left; R, right.
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3.6. Validation analyses

In the validation analyses, the group differences of dFCD variability
with different sliding window lengths and step sizes remained similar to
the main findings obtained using a sliding window length of 50 TRs and
step size of 5 TRs (supplementary Tables S1–S4, and Figures S5–S8).
Moreover, the abnormal dFCD variability of the left dmPFC could
predict the symptom severity of GAD even when the step size of sliding
widow was changed (supplementary Figure S9 and Figure S10), but the

predictive effect was not significant when the sliding window length
was changed. In addition, the effects of medications on dFCD varia-
bility-related group differences were not significant during validation
analyses.

4. Discussion

In this study, we investigated the abnormal patterns of dynamic FCD
in patients with GAD for the first time. Alterations of brain connectivity
in patients with GAD were predominantly derived from previous static
FC-related studies that ignored the dynamic properties of FC. Only a
few network-based dynamic FC-related studies have so far focused on
time-varying changes of FC in patients with GAD, and the whole-brain
voxel-wise dynamic connectivity alterations in patients with GAD have
not yet been addressed. Our results complemented previous static FC-
related findings and extended dynamic FC-related findings from the
whole-brain perspective using the dFCD approach, which did not re-
quire any prior hypothesis. We found that patients with GAD exhibited
increased dFCD variability in the medial prefrontal cortex and hippo-
campus, which are associated with self-referential processing and
emotional memory. Meanwhile, the dFCD variability of GAD decreased
in the PoG, a brain region implicated in sensorimotor function. These
findings provide novel evidence to deepen our understanding of pa-
tients with GAD by detecting abnormal dynamic patterns of brain
communications among regions without requiring any assumption.

Patients with GAD showed increased dFCD variability in the dmPFC,
one of the key regions of the DMN (Northoff et al., 2006;
Raichle, 2015). The DMN is responsible for self-related cognition,
emotional processes, and future planning (Menon, 2011;
Sylvester et al., 2012), and it is more active at rest than performing
cognitive tasks (Fox et al., 2005; Raichle, 2015; Raichle et al., 2001).
The DMN has received increasing attention in numerous psychiatric
diseases, and the abnormal resting state FC (rsFC) within DMN as well
as between DMN and other core neurocognitive brain networks has
been reported in patients with schizophrenia (Krishnadas et al., 2014;
Supekar et al., 2019), depression (Dong et al., 2019; Mulders et al.,
2015), and obsessive-compulsive disorder (Fan et al., 2017). Patients
with GAD also exhibit functional and structural impairments of the
DMN, including altered rsFC (Sylvester et al., 2012; Wang et al., 2016)
and aberrant gray matter volume (Schienle et al., 2011). The DMN is
also closely correlated with self-referential mental activity
(Raichle, 2015). Anxiety disorders are considered as “distress disorders”
that are associated with negative self-referential processes, including
worry, rumination, and self criticism (Renna et al., 2017). Several

Fig. 2. Group differences in dFCD variability between
GAD patients and HCs (p< 0.05, TFCE corrected).
Significant differences were anchored in the bilateral
dmPFC, left hippocampus and right postcentral gyrus.
dFCD, dynamic functional connectivity density; GAD,
generalized anxiety disorder; HCs, healthy controls;
dmPFC, dorsomedial prefrontal cortex.

Table 2
Group differences in dFCD variability between GAD patients and HCs.

Brain regions sphere Cluster size Peak t values Coordinates in MNI
L/R (voxels) x y z

Hippocampus L 32 5.40 −30 −39 3
dmPFC L 18 4.08 −12 45 48
dmPFC R 37 4.66 6 51 30
Postcentral gyrus R 36 −4.22 18 −42 63
Postcentral gyrus R 45 −3.94 36 −33 45

Abbreviations: dFCD, dynamic functional connectivity density; GAD, general-
ized anxiety disorder; HCs, healthy controls; L, left; R, right; dmPFC, dor-
somedial prefrontal cortex.

Fig. 3. The abnormal dFCD variability of the left dmPFC could predict the
symptom severity of GAD (Bonferroni corrected =p 0.0098). The correlation
between the actual HAMA score and the predicted HAMA score of GAD was
calculated using Pearson's correlation analysis. dFCD, dynamic functional
connectivity density; dmPFC, dorsomedial prefrontal cortex; GAD, generalized
anxiety disorder; HAMA, 14-items Hamilton Anxiety Rating Scale.
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anxiety disorders are closely correlated with aberrant self-referential
processing, involving social anxiety disorder (Brown et al., 2019;
Cui et al., 2017; Yoon et al., 2019), social phobia (Blair and Blair, 2012;
Blair et al., 2011), and GAD (Fresco et al., 2017; Mennin et al., 2018).
The abnormal self-referential processing of theses anxiety disorders is
mainly associated with dysfunction of the medial prefrontal cortex. The
abnormal dFCD in the dmPFC in GAD found here may reflect the dis-
rupted dynamic connectivity patterns of the DMN, which may be as-
sociated with the negative self-referential processing of GAD. Basing on
this abnormal pattern, we could predict the symptom severity of GAD,
indicating that the altered dynamic neural communication between the
dmPFC and other brain regions may be associated with the symptom
changes of the disease. dFCD variability increased in the left
hippocampus of patients with GAD. The hippocampus is a critical re-
gion of the limbic system that is involved in emotion processing and
important for consolidation and retrieval of emotional memory
(Reshetnikov et al., 2018). Patients with GAD often experience emo-
tional hyperarousal and are especially sensitive to threatening-related
emotional stimuli (Mochcoyitch et al., 2014). Several brain regions,
including the orbitofrontal cortex (Pujara et al., 2019), the cingulate
cortex, the insula, the amygdala, and the hippocampus, are implicated
in threat processing (Fiddick, 2011), and patients with GAD exhibit
hyperactivation in the hippocampus when presented with pictures
correlated to life-threatening behaviors (Moon and Jeong, 2015). The
decreased rsFC between the hippocampus and regions involved in
limbic-prefrontal circuitry has also been reported in patients with GAD
(Chen and Etkin, 2013). Several studies found that the volume of the
hippocampus is decreased in patients with GAD (Abdallah et al., 2013;
Hettema et al., 2012; Moon et al., 2014). The excessive dFCD variability
of the hippocampus in patients with GAD found in the present study
may reflect unstable dynamic functional integration of the limbic
system that is formed by the hippocampus and other regions, which
may also be associated with extensive sensitivity to threatening stimuli
of GAD.

Furthermore, the dFCD variability of GAD decreased in the right
PoG, a brain region involved in the sensorimotor network (Jiang et al.,
2019; Wang et al., 2018b; Zhu et al., 2019). Previous neuroimaging
studies showed that the rsFC (Cui et al., 2016), spontaneous regional
brain activity (Xia et al., 2017), and brain signal variability (Li et al.,
2019) of the sensorimotor areas are decreased in patients with GAD,
suggesting the functional impairments of this network. The reduced
dFCD variability of the sensorimotor area in patients with GAD may
signify weakness in neural communication between this network and
other regions of the brain, which is consistent to the functional ab-
normalities of this region.

Several limitations of this study should be considered. First, albeit
the dFC method has been broadly used in numerous psychiatric and
neurological disorder-related studies, the neurocognitive functioning
represented by this approach is still ambiguous (Li et al., 2018b).
Second, the window size applied in this study was adopted from pre-
vious studies (Li et al., 2018b, 2018c; Pang et al., 2018). Although the
between-group differences in dFCD variability with different sliding
window lengths and step sizes were less influenced by these factors, the
selection of these parameters remains controversial. The significant
prediction of the symptom severity of GAD only survived in the sliding
window length of 50 TRs, which may be affected by several factors,
including the selection of the predictive model and the sliding-window
parameters, which need to be further verified in future studies. Third,
the important regions of GAD, including the ventromedial prefrontal
cortex (vmPFC) and amygdala, which play important roles in emotional
dysregulation and pathological worry in GAD, did not exhibit abnormal
dFCD variability in our study. We assumed that the dFCD method is
insensitive to the abnormalities of the vmPFC and amygdala of GAD.
Their abnormalities may be stable and not fluctuate within a short
period of time. The other explanation is that our sample size hinders our
observation of relevant results. Fourth, given the high comorbidity of

GAD and major depressive disorder, excluding those comorbid patients
may lead to uncomprehensive findings. Comorbidity samples are re-
quired to further test our findings in the future. Collecting eyes open
and eyes closed information via self-report may have some limitations.
For example, participants who reported that they stayed awake with
eyes closed may actually fall asleep for a short while without aware-
ness. In addition, some patients who fell asleep during scanning may
cheat us that they were awake. These issues cannot be checked by self-
report. Therefore, falling sleep and/or opening eyes are still possible
confounders having effects on our results. Future studies are expected
to further investigate the influences of these conditions on our results.
And most of our patients have been treated with medications. Future
studies are expected to rule out the potential confounding effects from
recruiting large samples of medication-free patients and verify our
findings. In addition, the time of stable medication treatment for every
patient prior to the scanning may have a potential effect on our results.
Future studies are expected to assess the influence of this indicator on
the FC in GAD.

5. Conclusion

Patients with GAD exhibited altered brain functional dynamics
using the voxel-wise FCD and sliding window correlation approach. The
altered dynamics of functional connectivity was located in the dmPFC,
hippocampus, and sensorimotor area. The dFCD abnormalities of the
dmPFC may be potential neuromarker in predicting the anxiety
symptom severity of GAD. These findings suggest the importance of
investigating the time-varying fluctuations of brain functional com-
munication to improve our understanding of GAD.
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